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Monomer adsorption on a square lattice with first- and second-neighbor interactions

Alain J. Phares and Francis J. Wunderlich
Department of Physics, Mendel Hall, Villanova University, Villanova, Pennsylvania 19085-1699

~Received 2 October 1996!

We obtain the low-temperature phases and phase transitions of monomer adsorption on a semi-infinite
square lattice of widthM , with first- and second-neighbor interactions. With first-neighbor interactions as-
sumed to be repulsive, and allowing second-neighbor interactions to be attractive or repulsive, six sets of
surface adsorption phases have been identified. Most of the numerical results conducted up toM512 are found
to fit exact closed-form expressions inM , thus allowing exact analytic extrapolations to the infinite two-
dimensional case~M5`!. @S1063-651X~97!03103-6#

PACS number~s!: 02.50.2r, 05.50.1q, 05.70.2a, 64.60.Cn
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I. INTRODUCTION

A year ago, we reported a number of crystallization p
terns ~phases! of monomers with nearest-~first-! neighbor
interaction on a multilayered semi-infinite square lattice@1#.
This article goes a step further, analyzing the more reali
model of monomer surface adsorption including nearest-
next-nearest-~second-! neighbor interactions. Lattice mode
have been used for a very long time; a brief summary
lattice calculations done by others can be found in Ref.@1#,
and the notation used here is very similar to that of Ref.@1#.

The surface is a semi-infiniteM3N square lattice~N→`!
in the presence of a gas containing one molecular species
the adsorbed molecules occupy one site. For this reason
refer to them as monomers. The system is at thermal e
librium and the chemical potential energym of a monomer
depends on the external gas pressure. The interaction e
gies of an adsorbed monomer areV0 with the lattice,V with
any first-neighbor monomer at a distancea, andW with any
second-neighbor monomer at a distancea &. The activities
associated with these three interactions are

x5expFm1V0

kBT
G , y5expF V

kBT
G , z5expF WkBTG , ~1!

wherekB is Boltzmann’s constant andT the absolute tem-
perature. Here the transfer matrixTM

1 for a lattice of width
M is of rankD(M )52M. It is recursively constructed as i
Ref. @1#, and we find

TM
1 5S TM21

1

TM21
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xPM21
1

xyPM21
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xyzPM21
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251;

~2!
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The numbers of monomers, first-neighbor monom
monomer interactions, and second-neighbor monom
monomer interactions per site areu0, u, andb, respectively.
In the limit ~N→`!, these quantities are related to the larg
eigenvalueR of TM

1 according to

u05
x

MR

]R

]x
, u5

y

MR

]R

]y
, b5

z

MR

]R

]z
,

S5
1

M
lnR2u0 lnx2u lny2b lnz, ~3!

whereS is the entropy per site divided bykB . For finite
lengthN, all the eigenvalues contribute to the expressions
u0, u, b, andS in a manner discussed in Ref.@2#. For given
monomer-monomer interactionsV andW and with the tem-
perature of the system set to be below a certain value
dictated by the relation

V

kBT
,210⇒T,

~2V!

10kB
, ~4!

adsorption patterns are observed to occur sequentially
increasing external chemical potentialm. The Cray C90 su-
percomputer of the Pittsburgh Supercomputing Center
used withEISPACK for the numerical computations.

In one dimension~M51!, next-nearest-neighbor mono
mers are at a distance 2a and their interaction is neglected
leaving only first-neighbor interactions. This case has an
act analytic solution and has been fully discussed in Ref.@1#.
The caseM52 is the only other case for which an exa
analytic solution can be derived including first- and seco
neighbor interactions, since the eigenvalues ofTM

1 are the
solutions of the secular equation

$R2x~y2z!%$R32R2@11x~y1z!1x2y3z2#

1Rx@~y1z22!~11x2y3z2!1xy~y2z221!#

1x3y~yz21!„~yz11!~y1z!24yz…%50, ~5!

where one root is immediately identified asx(y2z). The
first-neighbor interaction is repulsive~V,0! and, conse-
quently, the second-neighbor interactionW must be algebra-
ically greater whether it is repulsive or attractive (V,W).
2403 © 1997 The American Physical Society
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TABLE I. Characteristics of the phase adsorptions on square lattices of finite widthM>3. The quantity@M /2# refers to the integer par
of M /2 and the question mark stands for the lack of a closed-form expression for the entropy.

Phases u0 u b

S

M odd M even

p0 0 0 0 0 0
p1 M2@M /2#

2M
0 0 0 ~1/2M !ln@~M12!/2#

p2
~M even!

(M12)/4M 0 1/M ?

p3
~M even!

(M12)/4M (M22)/2M2 2/M2 ~1/2M !ln~M /2!

p4
~M even!

(M12)/4M 1/2M 0 ~1/2M !ln~M /2!

p5
1
2 0 (M21)/M 0 0

p6 (M12)/2M 3/M (M21)/M 0 0
p7
~M even!

1
2 2u1b5(M21)/M ?

p8 M2@M /2#

M

3M24@M /2#21
2M

0 0 0

p9
~M even!

(M12)/2M (M13)/2M 2/M 0

p10
~M even!

(M12)/2M 2u1b5(M15)/M ?

p11
~M even!

3
4 (M21)/M (M21)/M ?

p12
~M even.4!

3
4 (2M25)/(2M24) M224M16

M (M22)
?

p13 2M2@M /2#

2M
3M22@M /2#21

2M
2M22@M /2#22

M
0 ~1/2M !ln@~M22!/2#

p14
~M even!

(3M12)/4M (M11)/M 1 ~1/2M !ln~M /2!

p15 1 (2M21)/M (2M22)/M 0 0
e
s-
t
ng

ha
-
o

or

d
ie
IV
d

I.
rage
age
igh-

he

for

f
a

e-
ra-

ses

ura-

ly
ats
inct
Thusz.y and the rootx(y2z) is negative and cannot be th
largest root of Eq.~4!. Indeed, according to the Frobeniu
Perron theorem, the eigenvalue of the largest modulus of
family of matrices of which the transfer matrices belo
must be real and positive.

The energy per site must be continuous across a p
boundary. Thus, withDu0, Du, andDb being the correspond
ing changes ofu0, u, and b across a given boundary, n
change in the energy per site requires

~m1V0!Du01VDu1WDb50. ~6!

This equation has been verified to hold in all cases.
Section II provides most of the lattice configurations c

responding to the possible phases encountered forM.2.
Which phases and phase transitions are observed shoul
pend on the first- and second-neighbor interaction energ
These questions will be answered in Sec. III. Section
discusses the limit asM→` and Sec. V is the summary an
conclusion.

II. LATTICE CONFIGURATIONS
OF THE OBSERVED PHASES

With the physical constraintsV,0 andV,W, numerical
calculations were carried out up to and includingM512.
he

se

-

de-
s.

The characteristics of all the phasesp encountered for any
width M of the lattice greater than 2 are found in Table
The phases are ordered by increasing values of the cove
u0 of the lattice, and distinct phases with the same cover
are generally ordered by increasing the number of first ne
bors per site. In most cases, the characteristicsu0, u, b, and
S of the phases for a lattice of widthM were observed to fit
exactly closed-form expressions as reported in Table I. T
quantity@M /2# refers to the integer part ofM /2 and the ques-
tion marks stands for the lack of a closed-form expression
the entropy. For phasesp7 and p10, we obtain an exact
closed-form fit for~2u1b!, but not for the separate values o
u and b. With these two exceptions, the knowledge in
given phase ofu0, u, and b analytically in terms ofM
should, in principle, allow the construction of all the corr
sponding lattice configurations. Samples of these configu
tions are provided in Figs. 1 and 2. They exclude phasesp7
andp10 for the reason mentioned above and the trivial ca
of the empty~p0! and the completely filled~p15! lattice. In
these figures, a diagram represents one possible config
tion associated with a given phase whose characteristicsu0,
u, andb have been determined numerically. A diagram on
shows the section of the lattice whose configuration repe
throughout the lattice. We were able to enumerate all dist
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phase configurations and derive the entropy of all but the
phases mentioned above and four others,p2, p3, p11, and
p12, presented separately in Fig. 2.

As a sample of the manner in which we analytically co
puted the entropy of the adsorbed system in the phase
Fig. 1, we consider phasep1. ForM odd, the configuration
shown is the one for which every other column of the latt
of width M is unoccupied, while the remaining~M11!/2
columns have every other site occupied. The remaining c
figurations having the same values ofu0, u, andb are ob-
tained from this one by vertically shifting by one lattice s
the monomers of one or more of these~M11!/2 columns. In
this manner, we derive that the numberC of all the distinct
configurations of thep1 phase isd52(M11)/2. The value ofS
follows by dividing the logarithm ofC by the number (NM)
of sites ~N is the length of the lattice! and then taking the
limit N→`, or

S5 lim
N→`

S 1

NM D ln2~M11!/25 lim
N→`

H SM11

2NM D ln2J 50. ~7!

In the even case, the number of columns having every o
site occupied by a monomer is~M /2!. Thus there is a total o
d52M /2 distinct configurations generated by shifting ver
cally by one site the monomers of one or more of the
~M /2! columns. In addition, any two consecutive lattice ro
of each of thesed configurations may have their configur

FIG. 1. Lattice configurations for phasesp1, p4, p5, p6, p8, p9,
p13, andp14. A lattice site is represented by a square cell of sizea,
which is left blank when unoccupied and has a dot in the mid
when occupied.
o

-
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tion changed without creating additional first or second
neighbors. This is done by shifting horizontally one mono-
mer at a time by one cell, an operation that could not be done
for M odd. For any two consecutive rows, the number of
such restricted horizontal shifts is~M /2!, leading to a total of
g5~M12!/2 distinct configurations. Since there are~N/2!
sections of two consecutive rows, there aregN/2 distinct con-
figurations in each of the previously identifiedd configura-
tions. Thus the final numberC of all possible configurations
in phasep1 with M even is

C5dgN/2. ~8!

The value ofS follows as

S5 lim
N→`

S 1

NM D lnC5 lim
N→`

H S 1

NM D lnd1S 1

2M D lngJ
5S 1

2M D lng. ~9!

Equations~7! and~8! are easily generalized for other phases,
and the corresponding values ofg andd are indicated in Fig.
1, accordingly. The theoretical values ofS obtained in this
manner are listed in Table I and have been numerically veri-
fied to hold within the accuracy of the Cray C90 supercom-
puter.

For the phases of Fig. 2, a number of configurations can
easily be constructed from those presented in this figure. We
could not find the total numberC that reproduces the ob-
served numerical values. However, we list in Table I the
closed-form expression of the entropy forp3,

e

FIG. 2. Lattice configurations for phasesp2, p3, p11, andp12
occurring only for lattices of even width. The convention adopted in
this figure is the same as in Fig. 1.
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~1/2M !ln~M /2!, which fits exactly the numerical results fo
evenM up to and includingM512.

The configurations provided for phasesp3 andp12 require
some explanation. Phasep3 exists for lattices of even width
M . The configuration shown exhibits highlighted sections
the lattice that are 434, 636, etc., up toM3M . This indi-
cates that the section of the lattice that repeats throughou
lattice is the highlighted 434 for the lattice of widthM54,
636 for the lattice of width 6, and so on. Phasep12 appears
only for lattices of even widthM>6. Figure 2 exhibits one
possible configuration for each ofM56 and 8, which is then
easily generalized for higher even values ofM .

III. ENERGY REGIONS, SETS OF PHASES,
AND PHASE TRANSITIONS

First- and second-neighbor adsorbate-adsorbate inte
tion energiesV andW depend on the molecular properties
the monomers and the lattice spacinga. We were able to
identify numerically six interaction energy regions. In ea
region, only a certain number or set of the phases are
served. In a given set, a phase transition occurs at a ce
external gas pressure, or chemical potentialm, as required by
Eq. ~6!. For convenience, we introduce the quantities

a52~W/V!, f ~M !5 1
2 ~M22!/~M21!, ~10!

wherea is negative for the repulsive second-neighbor int
action and positive otherwise, witha.21. The six sets of
phases are ordered by increasing values ofa.

Set (a). This set corresponds to21,a<21
2 for M odd

and21,a,21
2 for M even. For oddM , the order in which

the phases appear with increasingm arep0, p1, p8, p13 and
p15. The transitions have been verified to occur exactly
predicted by Eq.~6!, namely,

p0→p1 , m1V050;

p1→p8 , m1V0522V;

p8→p13, m1V0522V24W;

p13→p15, m1V0524V24W.

For evenM , the phases encountered sequentially arep0, p1,
p4, p8, p9, p13, p14, andp15 and the transitions occur ex
actly as predicted:

p0→p1 , m1V050;

p1→p4 , m1V052V;

p4→p8 , m1V0522V;

p8→p9 , m1V0522V22W;

p9→p13, m1V0522V24W;

p13→p14, m1V0523V24W;

p14→p15, m1V0524V24W.
f

he

c-

b-
in

-

s

Set (b). This set is observed only forM odd and corre-
sponds to2 1

2,a,2f (M ). The phases encountered seque
tially arep0, p1, p5, p8, p6, p13, andp15 and, as predicted by
Eq. ~6!, the transitions occur exactly at

p0→p1 , m1V050;

p1→p5 , m1V0524W;

p5→p8 , m1V052V~M11!12W~M21!;

p8→p6 , m1V051V~M25!22W~M21!;

p6→p13, m1V0524V;

p13→p15, m1V0524V24W.

Set (b8). This set is observed only forM even and cor-
responds toa521

2. The phases encountered sequentially
p0, p1, p3, p7, p10, p12, p14, andp15 and, as predicted by
Eq. ~6!, the transitions occur exactly at

p0→p1 , m1V050;

p1→p3 , m1V052V;

p3→p7 , m1V0522V;

p7→p10, m1V0523V;

p10→p12, m1V0524V;

p12→p14, m1V0525V;

p14→p15, m1V0526V.

Set (c). This set corresponds to2f (M )<a,0 for M
odd and2 1

2,a,0 for M even. For oddM , the phases are
sequentially,p0, p1, p5, p6, p13, andp15. As predicted by
Eq. ~6!, the transitions occur exactly at

p0→p1 , m1V050; p1→p5 , m1V0524W;

p5→p6 , m1V0523V; p6→p13, m1V0524V;

p13→p15, m1V0524V24W.

For evenM , the phases encountered sequentially arep0, p1,
p2, p5, p8, p11, p14, andp15 and the transitions occur ex
actly as predicted

p0→p1 , m1V050;

p1→p2 , m1V0522W;

p2→p5 , m1V0524W;

p5→p8 , m1V0523V;

p8→p11, m1V0524V;

p11→p14, m1V0524V22W;

p14→p15, m1V0524V24W.
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Set (d). This set corresponds to 0<a,f (M ) and is the
same forM odd and even. The phases encountered seq
tially arep0, p5, p6, andp15 and, as predicted by Eq.~6!, the
transitions occur exactly at

p0→p5 , m1V0522W~M21!/M ;

p5→p6 , m1V0523V;

p6→p15, m1V0524V22W~M21!/~M22!.

Set (e). This set corresponds tof (M )<a for both M
odd and even. The phases encountered sequentially arp0,
p5, andp15 and, as predicted by Eq.~6!, the transitions occur
exactly at

p0→p5 , m1V0522W~M21!/M ;

p5→p15, m1V0522V~2M21!/M22W~M21!/M .

Sets~b!, ~c!, ~d!, and~e! each have a boundary dependi
onM , namely,uau5f (M ). Solving this equation forM gives

M05~222uau!/~122uau!. ~11!

It is therefore possible that, for a given molecular species
a given lattice substrate, a different set of phases may
observed depending on the width of the lattice. For exam
the ~b! set of phases occurs forM odd and for21

2,a,
2f (M ), for as long asM,M0. On increasing the odd valu
of the lattice width, one observes the change from the~b! set
to the ~c! set. Similarly, the~d! set occurs if 0<a,f (M )<
1
2 and will be observed forM>M0.2; on decreasing the
lattice width, it is possible to observe the change from the~d!
set to the~e! set whenM reaches the rangeM0.M.2. As
expected, thea50 case with no second-neighbor interacti
reproduces the set of phases reported in Ref.@1#.

IV. THE INFINITE TWO-DIMENSIONAL LATTICE

We gradually increase the lattice widthM to reach the
infinite two-dimensional limit. In this limit, one observes th
merging of the following phases:p1, p2, p3, and p4 into
phasep̄1; p5 andp6 into phasep̄2; p7, p8, p9, andp10 into
phasep̄3; and, finally,p11, p12, p13, andp14 into phasep̄4.
The full coveragep15 phase reaches the limitp̄5. With the
exception of phasesp7 andp10, all other mergers are eviden
from the list of Table I and the lattice configurations
Figs. 1 and 2. The phases predicted to exist on the infi
two-dimensional lattice are listed in Table II.

TABLE II. Characteristics of the phase adsorptions on the in
nite two-dimensional square lattice.

Phases u0 u b S

p0 0 0 0 0
p̄1

1
4 0 0 0

p̄2
1
2 0 1 0

p̄3
1
2

1
2 0 0

p̄4
3
4 1 1 0

p̄3 1 2 2 0
n-

d
be
e,

te

Sets ~a! and ~b8! merge into a single set~ā! made of
phasesp0, p̄1, p̄3, p̄4, and p̄5. We predict set~ā! to occur
when21,a<21

2, with phase transitions at

p0→ p̄1 , m1V050;

p̄1→ p̄3 , m1V0522V;

p̄3→ p̄4 , m1V0522V24W;

p̄4→ p̄5 , m1V0524V24W.

As noted in Sec. III, asM increases, ifa is initially in the
range for which the~b! set of phases occurs, then, whenM
exceeds the valueM0, a is in the range of the~c! set. Thus,
whena is in the range21

2,a,0, we predict that the~c! set
of phases will reach the limit~b̄!, which is made of the
phasesp0, p̄1, p̄2, p̄4, and p̄5, with phase transitions at

p0→ p̄1 , m1V050;

p̄1→ p̄2 , m1V0522W;

p̄2→ p̄4 , m1V0524V;

p̄4→ p̄5 , m1V0524V24W.

The ~d! and~e! sets correspond to second-neighbor attract
0<a. In the infinite limit, they merge into a~c̄! set contain-
ing phasesp0, p̄2, and p̄5, with phase transitions at

p0→ p̄2 , m1V0522W;

p̄2→ p̄5 , m1V0524V22W.

V. SUMMARY AND CONCLUSION

All low-temperature adsorption phases of a single spec
of monomers on a square lattice infinite in length and
finite width M have been identified. Six sets of possib
phases are observed. These sets depend on the relative
of the second- to the first-neighbor interaction energy, wh
assuming the first-neighbor interaction to be repulsive a
allowing the second-neighbor interaction to be either rep
sive or attractive, as is often the case experimentally@3#. The
absence of a second-neighbor interaction discussed in
@1# is recovered as a special case. Since most numerica
sults fit exact analytic expressions in terms ofM , it is pos-
sible to predict the behavior of monomer adsorption on
infinite two-dimensional lattice by taking the limit asM goes
to infinity. Finite width lattices are a representation of crys
surfaces with terraces having a finite width. A particula
interesting feature of this lattice model is to exhibit differe
adsorption phases depending on the lattice width. Indee
has been observed experimentally that adsorption pattern
terraces vary with the width of the terrace@3#. Another fea-
ture of the model is to show that a connection exists betw
the series of phases observed at different external gas p
sures and the relative value of the second- to the fi
neighbor interaction energy. Experimentally, from t
knowledge of the external gas pressure and the heat of

-
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sorption of a given molecular species on a given crystal s
face, one determines the values of the chemical potentim
and the lattice interaction energyV0. This model shows tha
the external gas pressure at which a phase transition occu
simply related toV0 and to first- and second-neighbor inte
action energiesV andW. Therefore, it suggests that know
edge about short-range adsorbate-adsorbate interaction
r-

s is

er-

gies is possible by identifying adsorption phases and the c
ditions under which a transition occurs between phases.
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